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Summary

Recent admixture between genetically differentiated
populations can result in high levels of association be-
tween alleles at loci that are X10 cM apart. The trans-
mission/disequilibrium test (TDT) proposed by Spiel-
man et al. (1993) can be a powerful test of linkage
between disease and marker loci in the presence of as-
sociation and therefore could be a useful test of linkage
in admixed populations. The degree of association be-
tween alleles at two loci depends on the differences in
allele frequencies, at the two loci, in the founding pop-
ulations; therefore, the choice of marker is important.
For a multiallelic marker, one strategy that may improve
the power of the TDT is to group marker alleles within
a locus, on the basis of information about the founding
populations and the admixed population, thereby col-
lapsing the marker into one with fewer alleles. We have
examined the consequences of collapsing a microsatellite
into a two-allele marker, when two founding popula-
tions are assumed for the admixed population, and have
found that if there is random mating in the admixed
population, then typically there is a collapsing for which
the power of the TDT is greater than that for the original
microsatellite marker. A method is presented for finding
the optimal collapsing that has minimal dependence on
the disease and that uses estimates either of marker allele
frequencies in the two founding populations or of
marker allele frequencies in the current, admixed pop-
ulation and in one of the founding populations. Fur-
thermore, this optimal collapsing is not always the col-
lapsing with the largest difference in allele frequencies
in the founding populations. To demonstrate this strat-
egy, we considered a recent data set, published previ-
ously, that provides frequency estimates for 30 micro-
satellites in 13 populations.
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Introduction

Evidence of association does not always imply that two
loci are linked, since association can occur between al-
leles at unlinked loci in the presence of forces such as
selection or population admixture. To support the con-
clusion that a marker associated with a disease is phys-
ically close to a disease-susceptibility locus, evidence of
linkage also is needed. For complex diseases, parametric
linkage analysis using pedigree data may not be reliable,
because the genetic model for the disease is unknown.
Affected-sib-pair tests often are used to detect linkage,
but, without large sample sizes, these methods have little
power to identify susceptibility loci having small effects
(Cox and Spielman 1989). Spielman et al. (1993) pro-
posed an alternative approach that uses family data and
that examines marker allele-transmission patterns from
parents to affected children. Their transmission/dise-
quilibrium test (TDT) has the power to detect linkage
if there is association and therefore is ideally suited, as
a test of linkage, to follow up a positive test for asso-
ciation, for those diseases for which family data are
available. For late-onset diseases such as Alzheimer, the
TDT is not useful, because parental data typically are
missing.

Populations with a history of recent admixture be-
tween genetically differentiated groups can be enriched
for association; for example, alleles at loci that are X10
cM apart can have appreciable association in the initial
generations following admixture (Chakraborty and
Weiss 1988). This raises the possibility that, for these
special populations, the TDT might be a powerful test
for detection of linkage to susceptibility genes for dis-
eases for which parental data are available. A number
of authors have studied recently admixed populations
(Chakraborty and Weiss 1988; Risch 1992; Stephens et
al. 1994), but their focus was on detecting association,
not linkage. McKeigue (1997) explored the use of the
TDT in admixed populations, to identify linkage to sus-
ceptibility loci. He assumed that suitable markers that
have alleles for which descent can be assigned uniquely
to one of the founding populations can be identified
throughout the genome. A more probable scenario is
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that investigators will use published sets of markers that
have been chosen for optimal screening of the human
genome (Sheffield et al. 1995; Yuan et al. 1997) and that
these markers are likely to have alleles that are in both
founding populations. Therefore, answers to questions
of descent are likely to be ambiguous.

Increased association between loci in an admixed pop-
ulation results only when the allele frequencies for each
locus in the founding populations are different (Chak-
raborty and Weiss 1988). Since disease genes are un-
known, disease penetrances usually are assumed to be
the same in the founding populations, and, consequently,
the frequencies of alleles at the disease locus are different
between high- and low-risk populations. Hence, ad-
mixed populations are most useful for the study of those
diseases with a large relative risk (i.e., ratio of disease
prevalences) between the founding populations (Risch
1992; McKeigue 1997). Marker selection also is critical
if one hopes to find increased association in admixed
populations. Chakraborty and Weiss (1988) and Ste-
phens et al. (1994) showed that two-allele markers with
large differences in allele frequencies, in the founding
populations, lead to powerful x2 tests of association.
McKeigue’s (1997) recommendation for the TDT is an
extreme case in which a marker allele has a frequency
of 1.0 in one founding population and of 0 in the other
founding population.

To date, most sets of markers used for screening of
the human genome are multiallelic microsatellites (Shef-
field et al. 1995; Yuan et al. 1997), and investigators are
beginning to use a genome scan to identify markers that
may be linked to susceptibility genes for complex dis-
eases (Copeman et al. 1995; Sawcer et al. 1996). Re-
cently, Spielman and Ewens (1996) proposed a multial-
lelic version of the TDT, and its properties were studied
by Kaplan et al. (1997). Additional transmission-based
test statistics for multiallelic markers have been proposed
by Sham and Curtis (1995) and Terwilliger (1995). In
general populations, alleles at two linked loci will seldom
be associated, unless their genetic map distance is low,
typically !1 cM (Bodmer 1986). Hence, the TDT is ex-
pected to have little statistical power, unless the markers
in the scan are very dense. For these populations, the
TDT is not a recommended test of linkage, for 5–10-
cM genome scans.

Since the increased association in admixed popula-
tions depends on the marker, the question of which
markers to choose for a genome scan is important. We
first consider a multiallelic marker and argue that it may
be advantageous to group alleles on the basis of infor-
mation about the founding populations, thereby col-
lapsing the marker into one with fewer alleles. There are
many ways to group alleles, and, therefore, a method is
needed for the identification of a good collapsing. The
criterion we propose is based on a result from the study

by Kaplan et al. (1997), which shows that, for randomly
mating populations, the power of the TDT for an m-
allele marker can be approximated from a noncentral
x2 distribution with df and a noncentrality pa-m � 1
rameter that can be estimated from case-control data.

The results of the study by Kaplan et al. (1997) are
based on the assumption of random mating, which may
or may not hold for the admixed population under study.
If the departure from random mating is not large, then
it is reasonable to assume that results based on random
mating should not lead one too far astray. In particular,
if the amount of admixture in each generation is low,
such as in the African American population, then it may
be reasonable to assume that random mating holds in
the population. Examination of marker data from Af-
rican American samples supports the random-mating as-
sumption (Weir 1992; Maiste and Weir 1995).

A good collapsing strategy lowers the df as much as
possible while reducing the noncentrality parameter as
little as possible. The maximum collapsing is to two
alleles, and, therefore, we consider this case only. In this
article, we consider an admixed population with two
founding populations and develop a general method to
identify the collapsing, to two allelic classes, that min-
imizes the reduction of the noncentrality parameter.
With this method, which is minimally dependent on the
disease, estimates of marker allele frequencies in the
founding populations can be used. When there is limited
information about one of the founding populations, such
as for the African American population, the method can
be modified for use of estimates of marker allele fre-
quencies in the admixed population, instead of in the
founding populations.

Jorde et al. (1995) published allele-frequency data for
30 microsatellite markers in 13 different populations.
To demonstrate the potential benefit of the collapsing
strategy, the power of the TDT for the optimal collapsed
biallelic marker was calculated for each of the 30 mi-
crosatellites, assuming that the power of the TDT was
50% for each noncollapsed microsatellite. When asso-
ciation was tested, by use of case-control data, the op-
timal collapsed two-allele marker was the one with the
largest difference in allele frequencies in the founding
populations (Stephens et al. 1994). For comparison, we
also calculated power by using this collapsing.

Even for the optimal collapsed two-allele marker, the
sample size required for a desired power may be too
large for practical purposes. McKeigue (1997) calculated
the number of informative case-parent pairs for a spec-
ified power, for various genetic models, under a simple
admixture model and very idealized assumptions about
the markers. His results would not apply to the African
American population; thus, for illustrative purposes, we
have performed sample-size calculations for such a
population.
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Methods

We begin by reviewing properties of Tmhet, the mul-
tiallelic version of the TDT statistic (Spielman and Ewens
1996; Kaplan et al. 1997). Suppose a marker locus has
m alleles, , with frequenciesM , M , ) , M1 2 m

, and the disease locus has two alleles, D1q , q , ) , q1 2 m

(disease allele) and D2 (normal allele), with frequencies
p1 and p2. Let v denote the recombination fraction be-
tween the marker and disease loci, and let Pr(MiFDr) be
the probability that a gamete carries allele Mi, given that
it carries allele Dr. Penetrance frs is the probability that
individuals with genotype DrDs are affected with the dis-
ease. We assume that , with at leastf x f � f x f11 12 21 22

one inequality strict. Finally, assuming that random mat-
ing holds in the population, is the prev-A � � p p frs r s rs

alence of the disease—that is, the probability that a ran-
dom individual is affected.

Suppose that there are NT families with one affected
child, and the mother, father, and affected child are all
typed at the marker. The data can be arranged in an

contingency table in which the rows and col-m # m
umns indicate transmitted and nontransmitted parental
alleles, respectively. Let nij denote the number of obser-
vations in the cell for row i and column j (i.e., the number
of MiMj parents who transmitted allele Mi to the affected
child), and let ni. and n.j denote the row and column
marginal sums, respectively. Spielman and Ewens (1996)
proposed the following statistic as a generalization of
their two-allele TDT statistic:

m 2m � 1 (n � n )j. .jT � .�mhet m n � n � 2nj�1 j. .j jj

Note that the value of Tmhet only depends on transmis-
sions from heterozygous parents. Kaplan et al. (1997)
studied the statistical properties of Tmhet and showed
that, for a randomly mating population, it is approxi-
mately a x2 statistic with df, under the null hy-m � 1
pothesis. Furthermore, if A is small, then the power of
the test for the alternative hypothesis of linkage can be
approximated from a noncentral x2 distribution with

df and the noncentrality parameterm � 1

2 ∗2N (1 � 2v) I , (1)T

where

m 2[Pr(M d affected) � Pr(M d unaffected)]j j∗I � . (2)�
Pr(M d affected) � Pr(M d unaffected)j�1 j j

The value of I* depends on the amount of association
between alleles at the marker and disease loci. In par-
ticular, if there is no association, then , and the∗I � 0
test has no power.

Kaplan et al. (1997) showed that if there is random
mating, then I* can be written in the following form:

2 2X [Pr(M d D ) � q ]j 1 j∗I � , (3)�
X2 j q � (1 � 2A)[Pr(M d D ) � q ]j j 1 j2

where and 2X � (B � p A)/p A(1 � A) B � f p �1 2 11 1

. This form of I* is easier to work with for analysisf p p12 1 2

of admixed populations, since only the quantities in the
sum depend on the marker. In particular, for two mark-
ers with the same v with regard to the disease locus, the
ratio of the noncentrality parameters is the ratio of these
sums, since X depends only on the disease locus and is,
therefore, the same for each marker. For the following
analysis, it is convenient to make one additional alge-
braic manipulation of the sum in equation (3). It is not
difficult to show that if , then thef x f � f x f11 12 21 22

value is between 0 and 1, and, thus, I*n � X(1 � 2A)/2
can be written as

2
2 ( )Pr M d D �q[ ]j 1 jX∗I � . (4)�

( ) ( )2 q 1 � n �nPr M d Dj j j 1

The importance of equation (4) is that the value of n

does not depend on the marker.
We assume that there are two founding populations

(Chakraborty and Weiss 1988; Stephens et al. 1994) and
that the dynamics of the admixed population follow
model 2 in the study by Ewens and Spielman (1995). In
generation 0, individuals belong to either of the founding
populations, and random mating is allowed only within
each population. Allele frequencies in generation 0, at
the marker and disease loci in population i, are denoted
as qij and pir, respectively ( ; ;j � 1, ..., m r � 1, 2 i �

). We denote the frequencies of gametes carrying1, 2
MjDr, in population i in generation 0, as gijr. In founding
populations, it is unlikely that most markers in a scan
with a density of x5 cM will be associated with the
disease locus, so the marker and disease loci are assumed
to be in linkage equilibrium in the founding populations;
that is, , for all i, j, and r.g � q pijr ij ir

Generation 1 consists of the offspring of generation
0. If a is the proportion of generation 1 from population
1, then allele frequencies for the marker and disease loci
in this generation are

q � aq � (1 � a)q and(1)j 1j 2j

p � ap � (1 � a)p , (5)(1)r 1r 2r

where and (the subscript integer in1 X j X m r � 1, 2
parentheses indicates the number of generations of ad-
mixture). Analogous expressions hold for gamete fre-
quencies in generation 1, Pr(1)(MjD1). Therefore,



706 Am. J. Hum. Genet. 62:703–712, 1998

Table 1

Parameters of the Admixture Model, Assuming Two Founding
Populations

Parameter Value(s)

Genetic model Recessive; dominant; additive
(p11, p21) (.001, .02); (.001, .02); (.1, .3)
Genotype risk ratio af /f11 22 10; 100; 1,000; 10,000
v .05
Initial proportions of founding

populations (a) .5; .98
Migration rates (g1, g2) (0, .02); (.01, .01)
No. of generations since

admixture 10

a The only values permitted are those that result in a relative risk
of 2–10.

ag � (1 � a)g1j1 2j1Pr (M d D ) �(1) j 1 p(1)1

� hq � (1 � h)q , (6)1j 2j

where . Individuals in generation 1 mate ath � ap /p11 (1)1

random, and their offspring are joined by the offspring
of recent immigrants who mated in one of the founding
populations, to form generation 2. Future generations
are formed in the same way. We assume that, in each
generation, the proportion of individuals in the admixed
population who are new immigrants from founding pop-
ulation i is gi, where . We make a distinctioni � 1, 2
between a and gi, to allow for the possibility that they
can be different, which, for example, is the case for the
African American population. Even though in each gen-
eration the admixed population may be stratified into
groups that do not intermate, we assume that most in-
dividuals in each generation are not new immigrants,
and, therefore, we ignore the stratification problem and
assume that the admixed population is mating randomly.
For example, for the African American population,

has been estimated (Stephens et al. 1994).g � g ! .051 2

By use of equations (4), (5), and (6), I* for generation
1 of the admixed population can be written as

2 2 2X (a � h) (q � q )1j 2j∗I � , (7)�
2 yq � (1 � y)qj 1j 2j

where the value of parameter is be-y � (1 � n)a � hn

tween 0 and 1 and does not depend on the marker.
Note that assumptions about the disease allele fre-

quencies in the founding populations affect . Ina � h

particular, if the disease allele frequencies ina � h � 0
the founding populations are equal. In the Appendix,
the form of I* in equation (7) is shown to continue to
hold for later generations of the admixed population,
assuming random mating in the admixed population and
recurrent migration. The value of the term outside the

sum and that for y will change each generation, but the
crucial point is that both quantities depend on the
marker only through v.

The sum in equation (7) simplifies if the marker has
just two alleles. If , thend � Fq � q F21 11

2(q � q )1j 2j�
yq � (1 � y)qj 1j 2j

2d
, if q 1 q21 11[q � (1 � y)d]{1 � [q � (1 � y)d]}11 11

� .
2d{ , if q ! q21 11(q � dy)[1 � (q � dy)]21 21

(8)

In order to maximize the right-hand side of equation
(8), d, q11, and q21 must be considered. By taking the
derivative with respect to d, we can show that, for fixed
q11 and q21, the right-hand side of equation (8) is an
increasing function of d. Also, if d is fixed, then the right-
hand side of equation (8) is largest when either q �11

or is minimized. McKeigue’s (1997)(1 � y)d q � yd21

recommendation is the extreme case of andd � 1
or .q � 0 q � 011 21

To get a sense of what values of y to expect, we cal-
culated its value in two different migration schemes and
many different genetic models (table 1). To find y, we
first used the model assumptions to calculate the de-
nominator in equation (3), for marker allele 1 (any
marker allele works, because y does not depend on the
marker allele). We then equated the resulting value to

and solved for y. We found that y de-yq � (1 � y)q11 21

pends on the admixture assumptions but that it is rea-
sonably insensitive to the genetic assumptions. This re-
sult is not unexpected if, for some i, isPr(M FD ) � qi 1 i

small relative to qi in the admixed population. In this
case, the denominator in equation (3), for marker allele
i, is approximately equal to qi. In the Appendix, we show
that, in the kth generation ( ) of admixture,k x 1

q � a q � (1 � a )q , (9)(k)i k 1i k 2i

where

k�1a � a(1 � g � g )k 1 2

g1 k�1� [1 � (1 � g � g ) ] . (10)1 2
g � g1 2

Hence, y should be close to ak. For example, if a � .5
and , then is always true; thus, a valueg � g a � .51 2 k

of y that is near .5 would be expected. Alternatively, if
and , then , in the kth gen-k�1a � 1 g � 0 a � (1 � g )1 k 2

eration of admixture. Thus, if and ,g � .02 k � 102

which are reasonable values for the African American
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population, then ; thus, in this case we woulda � .8310

expect the value of y to be near .8. In effect, equation
(7) shows that, for an admixed population, I* can be
written as a product of two terms—one depending on
the marker and the other depending on the disease. This
representation of I* shows that the optimal collapsing
is minimally dependent on the disease.

If y is close to ak, then it follows from equation (9)
that the denominator of the jth term in the sum in equa-
tion (7) can be replaced by q(k)j. Furthermore, it follows
from equation (9) that .2 2(q � q ) � {[q � q ]/a }1j 2j (k)j 2j k

Hence, the sum in equation (7) can be written as

2[q � q ](k)j 2j . (11)�
qj (k)j

Since the constant does not depend on the marker, it2ak

is absorbed into the constant in front of the sum in
equation (7). In cases for which there is limited infor-
mation about one of the founding populations, such as
the African population for the current African American
population, expression of the sum as shown in equation
(11) is advantageous, since it can be estimated only with
estimates of the allele frequencies in one of the founding
populations and in the current admixed population. For
a biallelic marker, the sum in equation (11) simplifies to

, where . For any mi-2 �1d {q [1 � q ]} d � q � q(k)1 (k)1 (k)1 (k)2

crosatellite, the collapsing that is optimal for the TDT
maximizes the sum in equation (8) or equation (11),
depending on the type of data available. There is no easy
way to identify the collapsing appropriate for obtaining
the maximum, other than to evaluate equation (8) or
equation (11) for all possible collapsings. Since d is
squared in the numerator of equation (8), it seems rea-
sonable to assume that the collapsed two-allele marker
with the largest d might be near optimal. The following
simple algorithm leads to the collapsed two-allele marker
with the largest d. If is the estimate of the frequencyq̂ij

of marker allele j in population i, where andj � 1, ..., m
, then all alleles with are grouped to-ˆ ˆi � 1, 2 q ! q1j 2j

gether. The same algorithm works if the data require
that equation (11) be used.

After identification of the optimal way to collapse the
marker, one still must decide whether to use the original
microsatellite or the collapsed biallelic marker. To do
this, we estimate the ratio , where I*(m) and∗ ∗I (2)/I (m)
I*(2) denote the values of I* for the m-allele microsat-
ellite and the collapsed two-allele marker, respectively.
If the ratio is near 1, then the noncentrality parameter
is not reduced by much, and the collapsed two-allele
marker would be preferred. To show this, we argue as
follows. For a marker with m alleles ( ) the powerm x 2
can be calculated from a noncentral x2 with dfm � 1
and noncentrality parameter . It follows from equa-lm�1

tion (1) that

∗I (2)
l � l . (12)1 m�1∗I (m)

If is near 1, then decreasing the df from∗ ∗I (2)/I (m)
to 1, without decreasing by much, can in-m � 1 lm�1

crease power.
To calculate the sample size necessary for analysis of

a two-allele marker with a recombination fraction from
the disease locus of v, we first find the appropriate x2

critical value of the specified significance level. We next
find the noncentrality parameter that gives the desired
power and equate this parameter to . Fi-2 ∗2N (1 � v) IT

nally, the calculation of I* follows from equation (2) and
from the recursions in the Appendix.

Results

In table 1, we list the parameters for the genetic and
the migration models that we considered in this article.
The parameterization of the genetic models is somewhat
different from that used by McKeigue (1997), since we
want to distinguish between cases in which the disease
allele is rare in one of the founding populations and
common in the other and in which the disease allele is
common in both. On the basis of the discussion by
McKeigue (1997), we considered diseases with a relative
risk of 2–10. To obtain values in this range, for the
relative risk, we needed to adjust the value of the ge-
notype risk ratio . Founding population 2 is as-f /f11 22

sumed to be the “high-risk” population, and the prev-
alence of the disease in the admixed population is
assumed to be low. If , then y is always near thea � .5
predicted value of .5, for all generations. For the differ-
ent combinations of parameter values for generation 10,
the range of values of y is .52–.58. In contrast, if a is
near 1, then the values of y are near 1 for the early
generations and move away from 1 for the later gen-
erations; for example, by generation 10, the range of
values of y is .83–.87, which agrees quite well with the
predicted value of .83, from equation (10).

Equation (12) shows that the collapsing of a micro-
satellite to a two-allele marker decreases the noncen-
trality parameter by the factor . In table 2, we∗ ∗I (2)/I (m)
examine how this decrease impacts the power of the
TDT for the collapsed two-allele marker, assuming that
the assigned significance level is .001 and the power of
the TDT for the m-allele microsatellite is .5. The results
in table 2 show that the power of the TDT for the col-
lapsed two-allele marker increases with an increase in
m, and in . Hence, the collapsing strategy in-∗ ∗I (2)/I (m)
creases the power of the TDT if m is large and

is close to 1. In particular, it makes little sense∗ ∗I (2)/I (m)
to collapse a three- or four-allele marker.

To examine what values of might be en-∗ ∗I (2)/I (m)
countered in practice, we considered published allele-
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Table 2

Power of a Collapsed Two-Allele Marker, As a Function of
∗ ∗I (2)/I (m)

m

POWER FOR ∗ ∗I (2)/I (m) �

.9 .8 .7 .6 .5

3 .54 .46 .39 .30 .22
4 .61 .53 .44 .36 .27
5 .67 .59 .49 .40 .31
6 .71 .64 .54 .44 .34
7 .75 .67 .58 .47 .37
8 .78 .70 .62 .51 .40
9 .81 .73 .64 .54 .42
10 .82 .75 .67 .56 .44
11 .84 .78 .69 .59 .47
12 .87 .81 .73 .63 .51

NOTE.—The assigned significance level is .001, and the power of
the TDT for the m-allele microsatellite is .5.

frequency data for 30 microsatellites from 13 different
populations (Jorde et al. 1995). We pooled the data from
the five different African populations, and for the Cau-
casian sample we pooled the Utah and French data. Us-
ing the algorithm described in Methods, we identified
the collapsing with the largest d, for each of the 30 mi-
crosatellites. We then found the best collapsing for

, for each microsatellite, assuming 10 generationsy � .85
of admixture. In table 3, estimates of the ratio

are given for all 30 microsatellites, for the∗ ∗I (2)/I (m)
best collapsed two-allele marker and for the collapsed
two-allele marker with the largest d. We also calculated
the power of the TDT for each of these biallelic markers,
assuming that the assigned significance level equals .001
and the power of the TDT for the microsatellite equals
.5. We found that for 26 of the microsatellites the op-
timal collapsed two-allele marker was preferred,
whereas the collapsed two-allele marker with the largest
d was preferred for 17 of the microsatellites. The reason
for the drop in number is that the value of I*, as noted
earlier, depends on d and on the allele frequencies. We
also performed the same analysis by assuming that we
had data from the Caucasian population and from the
current admixed population. The data for the admixed
population was calculated by use of the data from the
two founding populations, and . We ob-y � .83 k � 10
tained essentially the same results, suggesting that use
of estimates of allele frequencies in the current admixed
population and in the Caucasian population would have
worked just as well. For 17 microsatellites, the power
of the TDT for the collapsing with the largest d was
essentially the same as that for the collapsing with the
largest I*. However, for nine microsatellites, the power
of the TDT for the collapsing with the largest d was !.5,
whereas the power for the optimal collapsed two-allele
marker was 1.5. The optimal collapsing performed badly
for marker D9S249 only. However, this locus has only

three alleles, and the potential improvement, in power,
from collapsing is small (see table 2). In contrast, the
power of the TDT for the collapsing with the largest d

was !.3 for five markers other than D9S248.
Until now, we have discussed only relative power. It

is possible that, even after collapsing a microsatellite to
a two-allele marker, we still would not have sufficient
sample size for a powerful test. To investigate this issue
for a population such as the African American popu-
lation, we calculated the sample size needed to achieve
80% power for a biallelic marker, at an assigned sig-
nificance level, for each individual test of .001. For this
significance level and power, we required a noncentrality
parameter of ∼17. The value of v was set at .05, which
is appropriate for a 10-cM map. We assumed a migra-
tion model appropriate for the African American
population—namely, , , , anda � 1 g � 0 g � .02 k �1 2

—and we considered each of the three genetic models10
in table 1. The disease allele frequencies were assumed
to be .001 in the low-risk population and .5 in the high-
risk population. Thus, the disease gene is very common
in the high-risk population and virtually absent from the
low-risk population. We also considered two other sce-
narios, (.001, .02) and (.2, .7), and our conclusions were
essentially the same, so we did not include these cal-
culations. Three hypothetical diseases were considered:
one with a high relative risk of 10, one with a medium
relative risk of 5, and one with a low relative risk of 2.
The genotype risk ratio was determined for each disease,
to give the desired relative risk. Sample size was calcu-
lated for three types of biallelic markers. The first type
was polymorphic in both populations, and the difference
in allele frequencies was not very large. The difference
in allele frequencies for the second type of marker also
was not very large, but the marker was essentially mon-
omorphic in the low-risk population. Finally, the third
type of marker was also essentially monomorphic in the
low-risk population, but the difference in allele frequen-
cies was large. This last type of marker is the type that
McKeigue (1997) considered.

For table 4, the frequencies of M1, in the low- and
high-risk populations, for the examples of the three types
of markers are (.1, .4), (.001, .3), and (.001, .9), re-
spectively. The results in table 4 show that, for a relative
risk of x10, 80% power, for the most part, can be
achieved with feasible sample sizes, regardless of which
type of marker is used. If the relative risk drops to ∼5,
then markers of the third type are going to be needed
to perform the analysis with reasonable sample sizes.
With a larger difference in allele frequencies, markers of
the first type can also work. For example, if the allele
frequencies are (.1, .9) instead of (.1, .4), then the sample
size for a recessive model drops from 5,441 to 1,105.
Our results suggest that, in the African American pop-
ulation, diseases with a relative risk as small as 2 require
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Table 3

Microsatellite Data from the Study by Jorde et al. (1995)

LOCUSa

OPTIMAL COLLAPSED TWO-
ALLELE MARKER

COLLAPSED TWO-ALLELE

MARKER WITH LARGEST d

d I ∗ (2)/I ∗ (m) Power d I ∗ (2)/I ∗ (m) Power

D1S407 (9) .17 .73 .66 .17 .73 .66
D1S399 (10) .22 .49 .42 .22 .49 .42
D2S273 (8) .12 .64 .55 .13 .56 .46
D3S1537 (9) .22 .84 .76 .22 .84 .76
D3S1545 (9) .28 .86 .77 .28 .85 .77
D4S1525 (11) .32 .71 .69 .43 .66 .66
D4S1530 (13) .28 .70 .73 .30 .39 .35
D5S580 (22) .36 .80 .91 .41 .77 .90
D6S400 (11) .49 .87 .93 .49 .87 .83
D6S393 (8) .41 .78 .68 .58 .54 .45
D7S620 (10) .18 .80 .76 .21 .63 .59
D7S623 (7) .11 .80 .67 .11 .80 .67
D8S499 (13) .20 .77 .79 .38 .40 .36
D8S384 (8) .20 .89 .77 .26 .30 .17
D9S249 (3) .04 .34 .11 .04 .34 .12
D9S762 (7) .02 .68 .56 .04 .27 .13
D10S526 (18) .21 .66 .74 .40 .54 .64
D10S516 (13) .12 .55 .57 .26 .39 .34
D10S525 (7) .04 .69 .57 .08 .37 .23
HRAS1 (3) .13 .99 .59 .13 .99 .60
VWFII (9) .23 .53 .45 .23 .53 .45
D14S119 (16) .30 .63 .72 .38 .62 .71
D15S195 (12) .12 .64 .64 .14 .34 .27
D16S485 (9) .22 .63 .57 .22 .63 .57
D17S919 (11) .37 .81 .78 .37 .81 .78
D18S4930 (8) .07 .57 .46 .16 .35 .23
D19S403 (11) .45 .80 .78 .45 .78 .76
D19S400 (11) .35 .55 .53 .35 .55 .53
D20S161 (9) .38 .85 .77 .38 .85 .77
D20S428 (10) .17 .90 .83 .17 .90 .83

NOTE.—For each microsatellite, the values of d, , and the power of∗ ∗I (2)/I (m)
the TDT are given for the optimal collapsed two-allele marker and for the collapsed
two-allele marker with the largest d. The assigned significance level is .001, and
the power of the TDT for the m-allele microsatellite is .5. The value of y is .85.

a The number of alleles is given in parentheses.

too large a sample and therefore cannot be studied by
use of this method.

Discussion

Recently admixed populations can be enriched for as-
sociation, and, therefore, the TDT can be a powerful
test for linkage in these populations. The increase in
association is a consequence of mixing subpopulations
with differences in allele frequencies at the marker and
disease loci. Under reasonable assumptions, the larger
the relative risk for the disease in the founding popu-
lations the more powerful the TDT. When performing
genome scans, most investigators probably will use one
of the batteries of markers that are currently available
(Sheffield et al. 1995; Yuan et al. 1997). Since the mark-
ers are microsatellites, it is possible that the TDT may

be more powerful for collapsed two-allele markers. For
the data from the study by Jorde et al. (1995), when we
assumed two major founding populations and random
mating in the admixed population, we found that col-
lapsing the microsatellite in the optimal way almost al-
ways led to a more powerful test, and, therefore, we
would recommend this collapsing strategy. An addi-
tional benefit of collapsing markers to two allelic classes
is that it is easy to choose, from the collection of avail-
able markers, those markers with the best chance of
identifying a disease locus. In particular, the best markers
will maximize the sum in either equation (8) or equation
(11), depending on the available data.

An important feature of the method described in this
article is that it does not depend on the disease, and,
therefore, it can be used when planning a study. Crucial
to the analysis are marker-allele-frequency estimates for
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Table 4

Sample-Size (NT) Calculations for Populations Similar to
the African American Population, under the Assumptions
of and of the Migration Model and Parametersv � .05
Given in Results

RELATIVE-
RISK

RATIO

MARKER

TYPE

SAMPLE SIZE FOR EACH TYPE OF

GENETIC MODELa

Recessive Additive Dominant

10 1 1,496 861 806
2 744 451 425
3 204 122 114

(37) (19) (13)
5 1 5,441 1,789 1,528

2 2,476 877 759
3 699 242 209

(17) (9) (6)
2 1 69,147 12,554 9,351

2 28,978 5,501 4,146
3 8,353 1,570 1,179

(5) (3) (2)

NOTE.—The assigned significance level is .001, and the de-
sired power is .8. The frequencies of marker allele M1 in the
low- and high-risk populations for three marker types are (.1,
.4), (.001, .3), and (.001, .9), respectively. The frequencies of
the disease allele in the low- and high-risk populations are
.001 and .5, respectively.

a The genotype risk ratios are given in parentheses.

the founding populations. Often, one of these popula-
tions is Caucasian, and there probably are good esti-
mates available in one of the public databases. This may
not be the case for the other founding population, and,
therefore, frequency estimates may have to be developed,
in order for the method to be implemented. Fortunately,
this is not very disease specific, and only one collection
of markers is needed. An alternative strategy, which may
be easier, is to estimate allele frequencies in the admixed
population and to use the representation of the sum in
equation (11). Our results for the data from the study
by Jorde et al. (1995) suggest that this approximation
will give essentially the same results. For the African
American population, this approach also would be pre-
ferred, because of the multiple African subpopulations
from which the founding ancestors could have
originated.

Finding the optimal collapsing is not difficult but must
be done numerically. An alternative strategy is to use the
collapsing that has the largest d, because there is a simple
algorithm for this collapsing. For the data from the study
by Jorde et al. (1995), this strategy increased the power
of the test for only ∼65% of the markers, which was
much less than the proportion of markers for which the
power was improved by the optimal collapsing (90% of
the markers). In addition, the collapsing with the largest
d performed substantially worse than the original mi-
crosatellite, for several of the markers, whereas the op-
timal collapsing performed badly only for a single three-

allele marker. The collapsing leading to the largest d

performs badly if the resulting alleles are common in
both founding populations. For these cases, the optimal
collapsing should be used.

When the noncentrality parameters for two different
collapsings are compared, the genetic and migration par-
ameters are all subsumed by a single parameter, y. Fur-
thermore, the value of this parameter is very robust in
the genetic model and depends primarily on the migra-
tion parameters. Hence, for recently admixed popula-
tions with a good historical record, reasonably good
estimates of y, which are not very disease specific, can
be obtained . For populations such as the African Amer-
ican population, a value of is reasonable, wheny � .8
admixture is assumed to have been ongoing for ∼10–15
generations. It also should be kept in mind that ap-
proximate values of y are all that are needed to judge
whether or not to collapse the microsatellite.

The results in this article were obtained by assumption
of random mating in the admixed population. If there
is nonrandom mating, then the formula for the noncen-
trality parameter given by Kaplan et al. (1997) no longer
holds. However, small departures from random mating
should give similar results, whereas large departures
probably would be noticed by the investigator. In the
African American population, for example, stratification
has not been detected in several studies of markers (Weir
1992; Maiste and Weir 1995).

Even though we made many assumptions during our
investigation of sample-size requirements for two-allele
markers, several of the conclusions are general and
should be kept in mind when a study is being planned.
Most importantly, the larger the relative risk for the
disease in the founding populations, the more powerful
the test. In addition, biallelic markers should have as
large a d as possible, and, for any given d, the rarer the
marker allele in the low-risk population, the better. Our
results suggest that, in the African American population,
diseases with large relative risk (110) can be studied by
use of biallelic markers with values of d as small as .3.
For diseases with moderate relative risk (∼5), markers
with a large d are required. Finally, diseases with small
relative risk (!2) appear to require too large a sample
size, even for markers with a large d. This is in contrast
with the results from the study by McKeigue (1997),
who obtained reasonable sample sizes for diseases with
a relative risk as low as 2. One reason for the difference
is that McKeigue assumed an equally admixed popu-
lation—that is, —which is not appropriate for thea � .5
African American population. Also, McKeigue calcu-
lated the number of informative case-parent pairs, which
can be much less than the actual sample size.

We endorse the conclusion of Briscoe et al. (1994)
that, by choosing marker loci with large allele-frequency
differences in the founding populations, it is possible to
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exploit association in the resulting admixed population,
to enhance the power of association analysis in gene
mapping. We, however, have refined their conclusion to
mean the choice of allelic classes for the markers at hand.
Collapsing alleles to two classes, in an optimal way, can
provide a substantial increase in power for the TDT, over
that obtained by use of all the original marker alleles.
These power studies were specifically for a test of link-
age, rather than for a test of linkage disequilibrium (Ste-
phens et al. 1994). Our study has shown that the extra
analysis required to consider alternative collapsing
schemes, after typing of a panel of markers, may result
in increased power for detection of a disease-gene
location.
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Appendix

The proof of equation (6), for later generations of the
admixed population, depends on showing that equations
(4) and (5) continue to hold in each generation. The
proof is by induction. For each generation, let g1 and g2

be the portions of the admixed population that are new
immigrants from populations 1 and 2, respectively. Sup-
pose that in generation k

q � a q � (1 � a )q , (A1)(k)i k 1i k 2i

p � b p � (1 � b )p , (A2)(k)i k 1i k 2i

and

P (M FD) � h q � (1 � h )q , (A3)(k) i r k 1i k 2i

where ak, bk, and hk are constants that depend on the
marker only through v. When migration is considered,
the marker allele frequencies in generation can bek � 1
written as

q � g q � g q � (1 � g � g )q(k�1)i 1 1i 2 2i 1 2 (k)i

� a q � (1 � a )q ,k�1 1i k�1 2i

where and . Thisa � g � (1 � g � g )a k x 1k�1 1 1 2 k

proves equation (A1), and the proof of equation (A2) is
analogous. In fact, . The proof of equation (A3)a � bk k

is a little more complicated because recombination must

be considered. The frequency of any haplotype MiDr in
generation can be written ask � 1

Pr (M D) � g q p � g q p � (1 � g � g )(k�1) i r 1 1i 1r 2 2i 2r 1 2

# [(1 � v)Pr (M FD)p � vq p ] .(k) i r (k)r (k)i (k)r

The coefficient of q1i is

h � g p � (1 � g � g )[(1 � v)h p � va p ] ,k�1 1 1r 1 2 k (k)r k (k)r

and the coefficient of q2i is

′h � g p � (1 � g � g )k�1 2 2r 1 2

# [(1 � v)(1 � h )p � v(1 � a )p ] .k (k)r k (k)r

The proof of equation (A3) follows from the observation
that

′h � h � g p � g p � (1 � g � g )pk�1 k�1 1 1r 2 2r 1 2 (k)r

� p .(k�1)r
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